МУК 4.1.663-97

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение массовой концентрации органических соединений в воде методом хромато-масс-спектрометрии

Дата введения: с момента опубликования

- 1. РАЗРАБОТАНЫ Уральским научно-исследовательским институтом метрологии (директор Леонов В.В., исполнитель Питерских И.А.) в соавторстве с Центром Госсанэпиднадзора Свердловской области (главный врач Никонов Б.И., исполнитель Баклыков В.Г.), Российским информационно-аналитическим центром Госкомсанэпиднадзора России (главный врач Подунова Л.Г., исполнитель Зельвенский В.Ю.). В разработке также принимали участие заместитель главного врача РИАЦ Двоскин Я.Г. и сотрудники фирмы Хьюлетт-Паккард.
- 2. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Главным государственным санитарным врачом Российской Федерации Г.Г.Онищенко 03.02.97.
 - 3. ВВЕДЕНЫ ВПЕРВЫЕ.

1. Назначение и область применения

Настоящая методика разработана на основе "Методов N 625 и N 8270 Американского агентства по охране окружающей среды" и является их модификацией для хромато-масс-спектрометров Hewlett-Packard MSD 5971A, 5972A и 5973A.

Методика предназначена для контроля за содержанием вредных веществ, перечисленных в табл.1, и определения массовой концентрации органических соединений, перечисленных в табл.2 и 3, при проведении санитарно-химических исследований в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования.

Определению каждого из соединений в диапазоне концентраций, указанном в табл.1, 2 и 3, не мешает присутствие других перечисленных соединений.

Методика предназначена для использования в системе санэпиднадзора, на предприятиях и в учреждениях, осуществляющих контроль качества и исследование воды водных объектов хозяйственно-питьевого и культурно-бытового водопользования.

2. Нормы погрешности измерений

Настоящая методика обеспечивает выполнение измерений массовой концентрации вредных органических веществ в воде с относительной погрешностью, не превышающей границ интервала ($\delta_{\rm H}$, $\delta_{\rm B}$), указанных в табл.1, 2 и 3.

Таблица 1

Характеристики методики и значения характеристик погрешности результатов измерений концентрации веществ, извлекаемых при основно-нейтральной экстракции (с указанием ПДК в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования)

Название вещества	ПДК, мкг/л	Зависимость результата измерения от концентрации образца, x=f(C), мкг/л	Диапазоны измеряемых концентраций, С, мкг/л	Относительное среднее квадратическое отклонение (внугрилабораторное), $S_{\mathtt{OTK}}$, ед. отн.	интер которых относи погрешн	ницы вала, в находится тельная ость, % (с стью 0,95)
					нижняя, δ _н	верхняя, $\delta_{\mathtt{B}}$
1	2	3	4	5	6	7
Гексахлорэтан	10	0,73C-0,83	50-1000	0,18	-67	-13
			10-50	0,17+0,67/x	-93	-13
			5-10	0,17+0,67/x	-136	-16
Нитробензол	200	1,09C-3,05	100-1000	0,19	-23	+35
			20-100	0,19+0,92/x	-41	+34
			10-20	0,19+0,92/x	-71	+27
1,2,4-Трихлорбензол	20	0,94C-0,79	50-1000	0,16	-32	+16
			10-50	0,15+0,85/x	-51	+19
			5-10	0,15+0,85/x	-80	+24
Нафталин	10	0,76C +1,58	5-10	0,21-0,41/x	-32	+26
			10-50	0,21-0,41/x	-54	+15
			50-1000	0,20	-60	+2
Гексахлорбутадиен	10	0,71C - 1,01	50-1000	0,20	-75	-14
			10-50	0,19+0,92/x	-112	-16
Гептахлор	50	0,87C-2,97	10-25	0,24-0,56/x	-94	-5
			25-50	0,24-0,56/x	-63	+9
			50-1000	0,23	-55	19
Ди-н-бутилфталат	200	0,59C+0,71	5-10	0,13+1,16/x	-100	+27
			10-25	0,13+1,16/x	-94	-7

C	-
Страница	- 3

						- I · ·
			25-1000	0,13+1,16/x	-90	-32
2,4-Динитротолуол	500	1,06C-3,60	100-1000	0,15	-19	+26
			50-100	0,14+1,26/x	-25	+24
			20-50	0,14+1,26/x	-44	+22
eta -Гексахлорциклогексан	20	0,87C-0,94	5-10	0,20x-0,58	-50	-11
			10-50	0,20x-0,58	-47	+9
			50-1000	0,193	-44	+13

Таблица 2 Характеристики методики и значения характеристик погрешности результатов измерений концентрации веществ, извлекаемых при основно-нейтральной экстракции

Название вещества	Зависимость результата измерения от концентрации образца, x=f(C), мкг/л	Диапазоны измеряемых концентраций, С, мкг/л	Относительное среднее квадратическое отклонение (внутрилабораторное), $S_{\mathtt{OTH}}$, ед.отн	Границы интервала, в которых находится относительная погрешнос % (с вероятностью 0,95)	
				нижняя, $\delta_{\mathtt{H}}$	верхняя, $\delta_{\mathtt{B}}$
1	2	3	4	5	6
Арохлор-1260	0,81C-10,86	200-1000	0,35+3,61/x	-85	+25
		100-200	0,35+3,61/x	-100	+21
		75-100	0,35+3,61/x	-110	+14
		50-75	0,35+3,61/x	-135	+4
2,2'-Дихлордиэтиловый эфир	0,86C-1,54	10-25	0,35-0,99/x	-70	+18
		25-1000	0,35-0,99/x	-68	+33
1,3-Дихлорбензол	0,86C-0,70	50-1000	0,26	-56	+20
		10-50	0,25+0,68/x	-74	+21
		5-10	0,25+0,68/x	-101	+23
1,4-Дихлорбензол	0,73C-1,47	50-1000	0,245	-78	-5

					Страниц
		10-50	0,24+0,23/x	-111	-8
1,2-Дихлорбензол	0,80C+0,28	5-10	0,20+0,47/x	-61	+28
		10-50	0,20+0,47/x	-57	+16
		50-1000	0,21	-54	+6
2,2'-Дихлордиизопропиловый эфир	1,03C-2,31	5-10	0,24+0,28/x	-124	+14
		10-25	0,24+0,28/x	-64	+29
		25-50	0,24+0,28/x	-43	+32
		50-1000	0,24	-36	+37
N-нитрозоди-н-пропиламин	1,12C-6,22	100-1000 100	0,27	-33	1
		50-100	0,27+0,68/x	-40	
		20-50	0,27+0,68/x	-67	
Аценафтилен	0,89C+0,74	5-10	0,24-1,06/x	-21	+14
		10-50	0,24-1,06/x	-38	+17
		50-1000	0,24-1,06/x	-45	+21
2,6-Динитротолуол	1,06C-3,60	100-1000	0,15	-19	+26
		50-100	0,14+1,26/x	-25	+24
		20-50	0,14+1,26/x	-44	+22
Аценафтен	0,96C+0,19	5-25	0,15-0,12/x	-21	+17
		25-1000	0,15	-25	+17
2,4-Динитротолуол	0,92C-4,81	20-50	0,12+1,06/x	-75	0
		50-1000	0,14	-42	+8
Флуорен	0,90C-0,0	50-1000	0,125	-29	+7
		10-50	0,12+0,26/x	-36	+14
4-Хлорфенил фениловый эфир	0,91C+0,53	5-10	0,20-0,94/x	-19	+10
		10-50	0,20-0,94/x	-34	+17
•	•	•	÷	•	

					Страниц
		50-1000	0,20	-38	+19
4-Бромфенил фениловый эфир	0,91C-1,34	50-1000	0,13+0,66/x	-34	+9
		10-50	0,13+0,66/x	-59	+7
Гексахлорбензол	0,74C+0,66	5-10	0,18-0,10/x	-48	+8
		10-50	0,18-0,10/x	-58	0
		50-1000	0,18	-60	-9
Алдрин	0,78C+1,66	5-10	0,27x-1,28	-28	+76
		10-50	0,27x-1,28	-56	+11
		50-1000	0,26	-66	+11
Фенантрен	0,87C-0,06	50-1000	0,13	-34	+4
		10-50	0,12-0,57/x	-42	+11
		5-10	0,12-0,57/x	-52	+19
Антрацен	0,80C+0,68	5-10	0,21-0,32/x	-39	+13
		10-25	0,21-0,32/x	-49	+7
		25-1000	0,205	-53	+6
Гептахлорэпокссид	0,92C-1,87	10-25	0,33-0,46/x	-75	+26
		25-50	0,33-0,46/x	-62	+32
		50-1000	0,325	-59	+38
4,4'-ДДЕ	0,70C-0,54	25-1000	0,26-1,17/x	-78	-10
		10-25	0,26-1,17/x	-70	-20
Диэльдрин	0,82C-0,16	5-10	0,20-0,16/x	-50	+1
		10-1000	0,20-0,16/x	-50	+6
Флуорацтен	0,81C+1,1	5-10	0,22-0,73/x	-28	+12
		10-50	0,22-0,73/x	-48	+11
		50-1000	0,21	-54	+8

4,4'-ДДД 0,56C-0,4 50-1000 0,28 -120 -38 Б-50 0,29-0,32/x -130 -60 Пирен 0,84C-0,16 5-10 0,17 -49 +2 10-1000 0,16 -45 +4 Эндрин альдегид 0,76C-3,86 100-1000 0,18+3,91/x -71 -6 50-100 0,18+3,91/x -88 -5 25-50 0,18+3,91/x -127 -3 4,4-ДДТ 0,79C-3,28 10-25 0,42+0,19/x -180 +9 25-50 0,42+0,19/x -113 +22 50-1000 0,43 -98 +28 Бутилбензилфталат 0,66C-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/x -110 -31 10-20 0,18+0,94/x -155 -36 Бена[а]антрацен 0,88C-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/x -84 +25 3,3'-Диклорбензидин 1,23C-12,65 100-1000 0,28+7,33/x -40 +58						Страниц
Пирен 0,84С-0,16 5-10 0,17 -49 +2 10-1000 0,16 -45 +4 4	4,4'-ДДД	0,56C-0,4	50-1000	0,28	-120	-38
10-1000			5-50	0,29-0,32/x	-130	-60
Эндрин альдегид 0,76С-3,86 100-1000 0,18+3,91/х -71 -6 50-100 0,18+3,91/х -88 -5 25-50 0,18+3,91/х -127 -3 4,4-ДДТ 0,79С-3,28 10-25 0,42+0,19/х -1180 +9 25-50 0,42+0,19/х -113 +22 50-1000 0,43 -98 +28 50-1000 0,43 -98 +28 50-1000 0,44 -110 -31 10-20 0,18+0,94/х -115 -36 50-1000 0,18+0,94/х -155 -36 50-100 0,18+0,94/х -64 +20 50-100 0,18+0,94/х -63 +25 50-100 0,18+0,94/х -63 +59 50-100 0,28+7,33/х -63 +59 50-100 0,28+7,33/х -63 +59 50-1000 0,28 -50 +32 50-1000 0,28 -50 +32 50-1000 0,28 -50 +32 50-1000 0,28 -50 +32 50-1000 0,27 -60 +18	Пирен	0,84C-0,16	5-10	0,17	-49	+2
50-100 0,18+3,91/x -88 -5 4,4-ДДТ 0,79C-3,28 10-25 0,42+0,19/x -180 +9 4,4-ДДТ 0,79C-3,28 10-25 0,42+0,19/x -113 +9 25-50 0,42+0,19/x -113 +22 Бутипбензилфталат 0,66C-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/x -110 -31 10-20 0,18+0,94/x -155 -36 Бенз[а]антрацен 0,88C-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/x -64 +20 5-10 0,15+0,93/x -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/x -40 +58 50-100 0,28+7,33/x -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/x -90 +17 <td></td> <td></td> <td>10-1000</td> <td>0,16</td> <td>-45</td> <td>+4</td>			10-1000	0,16	-45	+4
25-50 0,18+3,91/х -127 -3 4,4-ДДТ 0,79C-3,28 10-25 0,42+0,19/х -180 +9 25-50 0,42+0,19/х -113 +22 50-1000 0,43 -98 +28 Бутилбензилфталат 0,66C-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/х -110 -31 10-20 0,18+0,94/х -155 -36 Бенз[а]антрацен 0,88C-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18	Эндрин альдегид	0,76C-3,86	100-1000	0,18+3,91/x	-71	-6
4,4-ДДТ 0,79С-3,28 10-25 0,42+0,19/х -180 +9 25-50 0,42+0,19/х -113 +22 50-1000 0,43 -98 +28 Бутилбензилфталат 0,66С-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/х -110 -31 10-20 0,18+0,94/х -155 -36 Бенз[а]антрацен 0,88С-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23С-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93С-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84С-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			50-100	0,18+3,91/x	-88	-5
25-50 0,42+0,19/х -113 +22 50-1000 0,43 -98 +28 Бутилбензилфталат 0,66C-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/х -110 -31 10-20 0,18+0,94/х -155 -36 Бенз[а]антрацен 0,88C-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17			25-50	0,18+3,91/x	-127	-3
Бутилбензилфталат 0,66C-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/х -110 -31 10-20 0,18+0,94/х -155 -36 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -64 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18	4,4-ДДТ	0,79C-3,28	10-25	0,42+0,19/x	-180	+9
Бутилбензилфталат 0,66С-1,68 50-1000 0,20 -88 -26 20-50 0,18+0,94/x -110 -31 10-20 0,18+0,94/x -155 -36 Бенз[а]антрацен 0,88С-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/x -64 +20 5-10 0,15+0,93/x -88 +25 3,3'-Дихлорбензидин 1,23С-12,65 100-1000 0,28+7,33/x -40 +58 50-100 0,28+7,33/x -63 +59 Хризен 0,93С-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84С-1,18 10-50 0,26+0,73/x -90 +17 50-1000 0,27 -60 +18			25-50	0,42+0,19/x	-113	+22
20-50 0,18+0,94/х -110 -31 10-20 0,18+0,94/х -155 -36 Бенз[а]антрацен 0,88C-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			50-1000	0,43	-98	+28
Бенз[а]антрацен 0,88C-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18	Бутилбензилфталат	0,66C-1,68	50-1000	0,20	-88	-26
Бенз[а]антрацен 0,88С-0,60 50-1000 0,17 -40 +9 10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23С-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93С-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84С-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			20-50	0,18+0,94/x	-110	-31
10-50 0,15+0,93/х -64 +20 5-10 0,15+0,93/х -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			10-20	0,18+0,94/x	-155	-36
5-10 0,15+0,93/x -88 +25 3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/x -40 +58 50-100 0,28+7,33/x -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/x -90 +17 50-1000 0,27 -60 +18	Бенз[а]антрацен	0,88C-0,60	50-1000	0,17	-40	+9
3,3'-Дихлорбензидин 1,23C-12,65 100-1000 0,28+7,33/х -40 +58 50-100 0,28+7,33/х -63 +59 Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			10-50	0,15+0,93/x	-64	+20
Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/x -90 +17 50-1000 0,27 -60 +18			5-10	0,15+0,93/x	-88	+25
Хризен 0,93C-1,00 5-10 0,32 -82 +22 10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/x -90 +17 50-1000 0,27 -60 +18	3,3'-Дихлорбензидин	1,23C-12,65	100-1000	0,28+7,33/x	-40	+58
10-50 0,30 -62 +30 50-1000 0,28 -50 +32 Ди-(2-этилгексил) фталат 0,84С-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			50-100	0,28+7,33/x	-63	+59
Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/x -90 +17 50-1000 0,27 -60 +18	Хризен	0,93C-1,00	5-10	0,32	-82	+22
Ди-(2-этилгексил) фталат 0,84C-1,18 10-50 0,26+0,73/х -90 +17 50-1000 0,27 -60 +18			10-50	0,30	-62	+30
50-1000 0,27 -60 +18			50-1000	0,28	-50	+32
	Ди-(2-этилгексил) фталат	0,84C-1,18	10-50	0,26+0,73/x	-90	+17
			50-1000	0,27	-60	+18
Ди-н-октилфталат 0,76С-0,79 50-1000 0,21+1,19/х -69 0	Ди-н-октилфталат	0,76C-0,79	50-1000	0,21+1,19/x	-69	0
10-50 0,21+1,19/x -102 +8			10-50	0,21+1,19/x	-102	+8
Бенз[b]флуорантен 0,93C-1,8 5-10 0,22+0,43/х -127 +5	Бенз[b]флуорантен	0,93C-1,8	5-10	0,22+0,43/x	-127	+5

					Страниц
		10-50	0,22+0,43/x	-71	+20
		50-1000	0,23	-42	+22
Бенз[k]флуорантен	0,87C-1,56	50-1000	0,20	-50	+12
		25-50	0,19+1,03/x	-58	+10
		10-25	0,19+1,03/x	-88	+7
Бенз[а]пирен	0,90C-0,13	50-1000	0,23	-44	+21
		5-50	0,22+0,48/x	-61	+33
Индено[1,2,3-cd]пирен	0,78C-3,10	100-1000	0,30	-77	+13
		50-100	0,29+1,46/x	-86	+10
		20-50	0,29+1,46/x	-118	+8
Дибенз[a,h]антрацен	0,88C+4,72	100-1000	0,30+8,5/x	-59	+43
		50-100	0,30+8,5/x	-70	+65
Бенз[g,h,i]перилен	0,98C-0,86	50-1000	0,29+2,4/x	-52	+44
		25-50	0,29+2,4/x	-61	+50
Изофорон	1,12C+1,41	5-10	0,27+0,77/x	-26	+96
		10-50	0,27+0,77/x	-27	+68
		50-1000	0,27	-27	+53
Ди-(2- хлорэтокси)метан	1,12C-5,04	5-15	0,16+1,34x	-115	+12
		15-25	0,16+1,34/x	-65	+22
		25-50	0,16+1,34/x	-40	+28
		50-1000	0,34	-24	+33
eta -Гексахлорциклогексан	0,87C-0,94	5-10	0,20x-0,58	-50	-11
		10-50	0,20x-0,58	-47	+9
		50-1000	0,193	-44	+13

Таблица 3 Характеристики методики и значения характеристик погрешности результатов измерений концентрации веществ, извлекаемых при кислой экстракции

Название вещества	Зависимость результата измерения от концентрации образца, x=f(C), мкг/л	Диапазоны измеряемых концентраций, С, мкг/л	Относительное среднее квадратическое отклонение (внутрилабораторное), $S_{\mathtt{OTH}}$, ед.отн	которых н относительная	нтервала, в находится я погрешность, ностью 0,95)
				нижняя, $\delta_{ m H}$	верхняя, $\delta_{\mathtt{B}}$
1	2	3	4	5	6
Фенол	0,43C+1,26	5-10	0,26+0,73/x	-134	+21
		10-50	0,26+0,73/x	-161	-24
2-Хлорфенол	0,78C+0,29	50-1000	0,18+1,46/x	-58	+4
		20-50	0,18+1,46/x	-64	+13
		10-20	0,18+1,46/x	-74	+27
m-,о-Нитрофенол р-Нитрофенол	1,07C-1,15	50-1000	0,16+1,94/x	-23	+32
		25-50	0,16+1,94/x	-31	+35
		10-25	0,16+1,94/x	-56	+47
Диметилфенол	0,71C+4,41	100-1000	0,17	-58	-7
		50-100	0,16+0,21/x	-58	+1
		25-50	0,16+0,21/x	-52	+18
		10-25	0,16+0,21/x	-43	+50
		5-10	0,16+0,21/x	-25	+86
2,4-Дихлорфенол	0,87C+0,13	50-1000	0,15+1,25/x	-40	+10
		10-50	0,15+1,25/x	-55	+29
		5-10	0,15+1,25/x	-73	+49
4-Хлор-3-метилфенол	0,84C+0,35	50-1000	0,24	-53	+17
		10-50	0,23+0,75/x	-59	+31

	T	T	1	T	Стра
		5-10	0,23+0,75/x	-66	+46
2,4,6-Трихлорфенол	0,91C-0,18	50-1000	0,16+0,22/x	-40	+19
		20-50	0,16+0,22/x	-51	+29
		10-20	0,16+0,22/x	-70	+45
2,4-Динитрофенол	0,81C-18,04	200-1000	0,41	-95	+28
		100-200	0,38+2,36/x	-117	+17
4-Нитрофенол	0,61C-1,22	100-1000	0,38+2,57/x	-127	-7
		50-100	0,38+2,57/x	-137	-5
4,6-Динитро-2-метилфенол	1,04C-28,04	500-1000	0,05+42,29/x	-21	+14
		200-500	0,05+42,29/x	-51	+29
		120-200	0,05+42,29/x	-94	+45
Пентахлорфенол	0,93C+1,99	100-1000	0,26	-42	+32
		50-100	0,23+3,03/x	-46	+40
		20-50	0,23+3,03/x	-52	+58

3. Средства измерений, вспомогательные устройства, материалы, реактивы

3.1. Средства измерения

- 3.1.1. Хромато-масс-спектрометр Hewlett-Packard MSD 5971A (5972A, 5973A), состоящий из:
- масс-спектрометрического детектора MSD 5971A (5972A, 5973A);
- газового хроматографа HP 5890 серии II (6890), оснащенного капиллярной хроматографической колонкой Ultra2 длиной 30 м, диаметром 0,25 мм, с толщиной пленки неподвижной фазы 0,25 мкм или ей аналогичной;
 - системы обработки данных на базе персонального компьютера HP Vectra.
 - 3.1.2. Микрошприц НР 9301-0246 вместимостью 10 мкл или МШ-10М по ТУ 5Е 2-833-106.
- 3.1.3. Весы лабораторные типа ВЛР-200, первого класса точности по ГОСТу 24104-88Е или аналогичные.
 - 3.1.4. Цилиндры мерные 2-100 ГОСТ 1770-74.
 - 3.1.5. Пипетки вместимостью 0,1, 0,5, 1,0 первого класса точности по ГОСТу 29169-91.
 - 3.1.6. Колбы мерные 2-10-2, 2-200-2, 2-1000-2 по ГОСТу 1770-74.
 - 3.1.7. Растворы смесей органических соединений в хлористом метилене, метаноле или ацетоне

с концентрацией 2 мг/см 3 и погрешностью аттестации не более $\pm 2\%$.

3.1.8. ГСО N 5213-90 состава гексахлорбензола.

3.2. Реактивы и материалы

- 3.2.1. Ацетон, ч.д.а. по ГОСТу 2603-79.
- 3.2.2. Хлористый метилен по ГОСТу 9968-73.
- 3.2.3. Кислота серная концентрированная, ч. по ГОСТу 4204-77.
- 3.2.4. Гидроокись натрия, ч. по ГОСТу 4328-77.
- 3.2.5. Натрий сернокислый безводный, ч.д.а. по ГОСТу 1166-76.
- 3.2.6. Гелий газообразный очищенный марки А, ТУ 51-940-80.
- 3.2.7. Метанол, х.ч. по ГОСТу 6995-77.
- 3.2.8. Спирт этиловый ректификованный по ГОСТу 18300-87.
- 3.2.9. Вода дистиллированная по ГОСТу 6709-72.

3.3. Вспомогательные устройства

- 3.3.1. Контейнер для отбора проб емкости из темного стекла, объемом 1 л, снабженные завинчивающейся крышкой с тефлоновой прокладкой. Если образец не едкий, тефлон может быть заменен на фольгу. В случае отсутствия темной посуды, образец следует защитить от света.
 - 3.3.2. Делительная воронка ВД-1-2000ХС по ГОСТу 25336-82 или аналогичная.
- 3.3.3. Выпаривательная колба Кудерна-Даниша емкостью 500 мл (Kontes K-570050-1025 или эквивалентная). Присоединяется к трубочному концентратору.
- 3.3.4. Трубочный концентратор Кудерна-Даниша, вместимостью 10 мл, градуированный (Kontes K-570050-1025 или эквивалентный).
- 3.3.5. Концентратор Кудерна-Даниша с четырехшариковой колонкой Шнейдера (Kontes K-503000-0121 или эквивалентной).
- 3.3.6. Концентратор Кудерна-Даниша с двухшариковой колонкой Шнейдера (Kontes K-569001-0219 или эквивалентной).
 - 3.3.7. Ротационный испаритель типа ИР-1, ИР-1М или аналогичный.
 - 3.3.8. Устройство для встряхивания жидкостей любого типа.

4. Метод измерений

4.1. Измеренный объем пробы, примерно 1 дм 3 , последовательно экстрагируют метиленхлоридом при pH>11, а затем с pH<2, используя делительную воронку или непрерывный экстрактор. Экстракт метиленхлорида высушивают, концентрируют до объема 1 см 3 и анализируют методом ГХ/МС.

Качественную идентификацию осуществляют по временам удерживания и относительной интенсивности 1-го основного и 2-х подтверждающих ионов (m/z). Количественное определение идентифицированного соединения выполняют методом "внутренней градуировки с добавкой известного количества постороннего вещества", называемого "внутренним стандартом", относительно которого предварительно определяют градуировочный поправочный коэффициент (F), показывающий во сколько раз отклик масс-селективного детектора (площадь хроматографического пика, соответствующая основному для данного конкретного соединения иону m/z) на единицу массы вещества отличается от отклика масс-селективного детектора на единицу массы "внутреннего стандарта".

В качестве добавки для внутренней градуировки выбирают соединение из табл.4, сходное по аналитическому поведению с анализируемым соединением.

Таблица 4 Хроматографические характеристики веществ, рекомендуемых в качестве добавки для внутренней градуировки

Название вещества	Время удерживания, мин.	Характеристические массы, а.е.м.		
		Основной ион	Вторичные ионы	
2-Фторфенол	4,51	112	64	
Фенол-d б	5,46	99	42	
-			71	
1,4-Дихлорбензол-d 4	6,35	152	150	
			115	
Нитробензол-d 5	7,87	82	128	
			54	
Нафталин-d ₈	9,75	136	68	
Аценафтен-d ₁₀	15,05	164	162	
			160	
2,4,6-Трибромфенол	17,46	330	332	
			141	
Фенантрен-d10	19,55	188	94	
			80	
Хризен-d12	27,88	240	120	
			236	
Пириллен-d ₁₂	33,05	264	260	
			265	
2-Фторбифенил	-	172	171	
Трифенил-d ₁₄	-	244	122 212	

^{4.2.} Мешающие факторы могут быть связаны с недостаточной чистотой растворителей и реагентов, а также с загрязнением поверхности стекла, металлических деталей, что ведет к появлению посторонних пиков и (или) возрастанию линии фона на профиле полного ионого тока. Учет мешающих факторов осуществляют путем анализа холостых проб.

5. Требования безопасности

5.1. Хлористый метилен является слабым наркотиком, вызывающим меньшее поражение внутренних органов, чем ряд других хлорпроизводных углеводородов, относится к 4 классу опасности (ПДК для атмосферного воздуха - 8.8 мг/m^3) в соответствии с ГОСТом 12.1.007-76.

Токсичность и канцерогенность других реагентов, используемых в данном методе, точно не известны, поэтому при работе с ними, стоит соблюдать требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005-88.

5.2. При выполнении измерений с использованием хромато-масс-спектрометра следует соблюдать правила электробезопасности в соответствии с ГОСТом 12.1.019-79 и инструкцией по эксплуатации прибора.

6. Требования к квалификации операторов

- 6.1. К обработке проб воды допускают лиц, имеющих квалификацию инженера- или техника-химика и опыт работы в химической лаборатории.
- 6.2. К выполнению измерений с помощью метода ГХ/МС допускают лиц, имеющих квалификацию не ниже инженера-химика, прошедших соответствующий курс обучения и имеющих опыт работы на хромато-масс-спектрометре.

7. Условия выполнения измерений

- 7.1. Процессы приготовления растворов и обработки проб проводят в нормальных условиях при температуре окружающего воздуха 18±22 °C.
- 7.2. Выполнение измерений на хромато-масс-спектрометре проводят в условиях, рекомендуемых технической документацией к прибору.

8. Подготовка к выполнению измерений

8.1. Приготовление раствора NaOH с концентрацией 10 моль/л

На технических весах взвешивают 40 г NaOH и помещают в мерную колбу объемом 100 см 3 с 50-60 см 3 дистиллированной воды. После остывания доводят объем полученного раствора до 100 см 3 .

8.2. Приготовление 50%-ного (объемная доля) раствора серной кислоты

В мерный стакан или мензурку объемом не менее 200 см 3 помещают 50 см 3 дистиллированной воды и медленно порциями при перемешивании добавляют 50 см 3 концентрированной серной кислоты. После остывания объем полученного раствора доводят до 100 см 3 .

8.3. Приготовление исходных растворов определяемых органических соединений с номинальной концентрацией 2 мг/см³

При отсутствии аттестованных растворов определяемых в воде компонентов их готовят из чистых веществ с массовой долей основного компонента не менее 98%.

Для этого взвешивают на аналитических весах (с погрешностью не более 0,2 мг) по 20,0 мг веществ, принадлежащих к одной группе (фенолы, хлорпестициды, фталаты и др.) и помещают в мерную колбу объемом 10 см 3 . Растворяют в подходящем растворителе (ацетоне, хлористом метилене, метаноле), доводя объем раствора до метки при температуре 20 °C.

8.4. Приготовление растворов веществ, используемых для внутренней градуировки, с концентрацией 0,2 мг/см³

При отсутствий аттестованного раствора "внутреннего стандарта" его готовят из чистого вещества с массовой долей основного компонента не менее 98%. Для этого взвешивают на аналитических весах (с погрешностью не более 0,2 мг) 20,0 мг вещества, переносят в мерную колбу объемом 10 см 3 и растворяют в подходящем растворителе (ацетоне, хлористом метилене, метаноле), доводя объем раствора до метки при температуре 20 °C. Получают раствор "внутреннего стандарта" с концентрацией 2 мг/см 3 .

Затем пипеткой объемом 1 см 3 отбирают 1 см 3 полученного раствора и помещают в мерную колбу вместимостью 10 см 3 . Добавляют растворитель до метки при температуре 20 °C. Получают раствор "внутреннего стандарта" с концентрацией 0,2 мг/см 3 .

При необходимости использования нескольких "внутренних стандартов" готовят аналогичным образом исходный раствор смеси веществ.

8.5. Приготовление градуированных растворов

8.5.1. Приготовление градуированных растворов NN 1-3.

Пипетками объемом 1,0, 0,5 и 0,1 см 3 отбирают по 1,0, 0,5 и 0,1 см 3 исходных растворов компонентов (с концентрацией 2 мг/см 3) и помещают в три мерные колбы объемом 10 см 3 . Пипеткой объемом 0,1 см 3 в каждую колбу помещают по 0,1 см 3 раствора соответствующего "внутреннего стандарта" с концентрацией 0,2 мг/см 3 . Добавляют растворитель до метки.

8.5.2. Приготовление градуированных растворов NN 4-8.

Градуировочные растворы NN 4-8 готовят аналогичным образом в мерных колбах объемом 10 cm^3 из промежуточного раствора с концентрацией компонентов 0,1 мг/см 3 .

В табл.5 приведены значения объемов и концентраций растворов, используемых для приготовления каждого градуировочного раствора.

Характеристики градуировочных растворов*

Таблица 5

N градуировочного раствора	Концентрация раствора, используемого для его приготовления, мг/см ³	Объем пипетки,см ³	Концентрация каждого компонента в градуировочном растворе, мкг/см ³	Погрешность определения концентрации каждого компонента, %
1	2	1	200,0	2,5
2	2	0,5	100,0	2,5
3	2	0,1	20	2,5
4	0,1	5	50	2,8
5	0,1	1	10	2,8
6	0,1	0,5	5	2,8
7	0,1	0,2	2	2,8

_					7 · P · · · · · · · · · ·	
-	8	0,1	0,1	1	2,8	

^{*} Характеристики градуировочвых растворов остаются постоянными в течение срока хранения указанного для исходных растворов, но не более 6-ти месяцев. Если срок хранения для исходных растворов не указан или растворы были приготовлены из чистых веществ, то градуировочные растворы хранят не более 1-го месяца.

Промежуточный раствор с концентрацией 0,1 мг/см ³ готовят по процедуре приготовления раствора N 2, но без "внутреннего стандарта".

8.6. Подготовка прибора к выполнению измерений

Прибор включают в соответствии с "Техническим описанием и руководством по эксплуатации".

Перед началом каждого рабочего дня ГХ/МС-систему проверяют с помощью автоматического теста "Quick Autotune", каждую неделю выполняют тест" Standard Autotune".

Для выполнения тестов используют перфтортретбутиламин (PFTBA), ввод которого в прибор производится автоматически.

Выполнение данных тестов предполагает следующие инструментальные параметры:

энергия электронов - 70 эВ (номинал)

диапазон масс - 35-510 а.е.м.

время сканирования - по меньшей мере 5 сканов на пик, но не более 1 секунды на скан

Суть теста состоит в том, что необходимо получить в результате настройки масс-спектр калибровочного вещества соответствующий библиотечному масс-спектру PFTBA. Система обработки данных автоматически выполняет тест до тех пор, пока не будут достигнуты все критерии настройки, заложенные в программном обеспечении.

8.7. Определение градуированных характеристик (градуированных поправочных коэффициентов)

8.7.1. Получение градуированных данных.

Для получения градуировочных данных используют не менее 4-х градуировочных растворов, 1 из них должен иметь концентрацию близкую к нижней границе диапазона определяемых содержаний.

Каждый градуировочный раствор анализируют не менее 3-х раз, вводя 1 мкл в инжектор без деления потока при следующих условиях:

начальная температура термостата	4 °C
выдержка	4 мин
скорость нагрева	10 °С/мин
до температуры	310 °C
выдержка	5 мин
температура инжектора	275 °C
температура интерфейса ГХ/МС	280 °C

Времена удерживания компонентов и значения m/z основного и подтверждающих ионов приведены в табл.6.

Таблица 6

Хроматографические характеристики определяемых веществ

Название вещества	Время удерживания, мин.	Характеристические массы, а.е.м.		
		Основной ион	Вторичные ионы	
1	2	3	4	
Вещества, извлека	емые при основно-щелочн	ой экстракции		
Арохлор-260	-	360	362	
			394	
2,2'-Дихлордиэтиловый эфир	5,82	93	63	
			95	
1,3-Дихлорбензол	6,27	146	148	
			111	
1,4-Дихлорбензол	6,40	146	148	
			111	
1,2-Дихлорбензол	6,85	146	148	
			111	
2,2'-Дихлордииизопропиловый эфир	7,22	45	77	
			121	
N-нитрозо-ди-н-пропиламин	7,55	70	442	
			101	
			130	
Гексахлорэтан	7,65	117	201	
			199	
Нитробензол	7,87	77	123	
			65	
Изофорон	8,53	82	95	
			138	

			Стран
Ди-(2-хлорэтокси)метан	9,23	93	95
			123
1,2,4-Трихлорбензол	9,67	180	182
			145
Нафталин	9,82	128	129
			127
Гексахлорбутадиен	10,43	225	223
			227
Гептахлор	12,96	100	272
			274
2-Хлорнафталин	13,30	162	127
			164
eta -Гексахлорциклогексан	14,51	181	183
			109
Аценафтилен	14,57	152	151
			153
2,6-Динитротолуол	14,62	165	63
			89
Аценафтен	15,13	154	153
			152
Дибензофуран	15,63	168	139
2,4-Динитротолуол	15,80	165	63
			89
Флуорен	16,70	166	165
			167
4-Хлорфенил фениловый эфир	16,78	204	206
			141

			Cipai
4-Бромфенил фениловый эфир	18,27	248	250
			141
Гексахлорбензол	18,65	284	142
			249
Алдрин	18,69	66	263
			220
Фенантрен	19,62	178	179
			176
Антрацен	19,77	88	176
			179
Гептахлорэпоксид	20,08	353	355
			351
	21,78	149	150
			104
4,4'-ДДЕ	22,29	246	248
			176
Диэльдрин	22,42	79	263
			279
Флуорантен	23,33	202	101
			203
4,4'-ДДД	23,85	235	237
			165
Пирен	24,02	202	200
			203
Эндрин альдегид	24,10	67	345
			250
	25,25	235	237

			Стриг
			165
Бутилбензилфталат	26,43	149	91
			206
Бенз[а]антрацен	27,83	228	229
			226
3,3'-дихлорбензидин	27,88	252	254
			126
Хризен	27,97	228	226
			229
Ди-(2-этилгексил)фталат	28,47	149	167
			279
7,12-Диметилбенз[а]антрацен	29,54	256	241
			257
Ди-н-октилфталат	30,48	149	167
			43
Бенз[b]флуорантен	31,45	252	253
			125
Бенз[k]флуорантен	31,55	252	253
			125
Бенз[а]пирен	32,80	252	253
			125
Индено[1,2,3-cd]пирен	39,52	276	138
			227
Дибенз[a,h]антрацен	39,82	278	139
			279
Бенз[g,h,i]периллен	41,43	276	138
			277

			0.150
Вещества,	извлекаемые при кислой эк	стракции	
Фенол	5,77	94	65
			66
2-Хлорфенол	5,97	128	64
			130
2-Нитрофенол	8,75	139	109
			65
2,4-Диметилфенол	9,03	122	107
			121
2,4-Дихлорфенол	9,48	162	164
			98
2,6-Дихлорфенол	10,05	162	164
			98
4-Хлор-3-метилфенол	11,68	107	144
			142
2,4,6-Трихлорфенол	12,85	196	198
			200
2,4,5-Трихлорфенол	13,00	196	198
			200
2,4-Динитрофенол	15,35	184	63
			154
4-Нитрофенол	-	139	109
			65
4,6-Динитро-2-метилфенол	17,05	198	51
			105
Пентахлорфенол	19,25	266	264

	Стра	ница 20
	268	

Для основного характеристического и двух подтверждающих ионов, выбранных из табл.6, получают хроматограмму по реконструированному полному ионному току. На каждой хроматограмме измеряют площади пиков основных характеристических ионов определяемых компонентов и "внутренних стандартов", полученные значения заносят в табл.7.

Результаты градуировки прибора

Таблица 7

N градуировочного раствора	N анализа, (1)	Площадь характеристического иона соединеия Z, (\mathbb{Q}_i)	Площадь характеристического иона для "внутреннего стандарта", $\mathbb{Q}_{\mathrm{CTi}}$	Поправочный коэффициент соединения Z, (F_{i})
1	1	Q_{11}	Qctii	F_{ll}
	1	Q_{11}	Qct11	F_{ll}
	1	Q_{nl}	QcTnl	
n	1	$Q_{\rm nl}$	Q _{CTnl}	
	1	Q_{N1}	Q _{стиі}	F_{Nl}
N	1	Q_{Nl}	Q _{CTN1}	F_{N1}

8.7.2. Обработка градуировочных данных.

Для каждого соединения обрабатывают полученные данные следующим образом:

рассчитывают значение і-го поправочного коэффициента:

$$F_i = \frac{Q_i \times C_{CT}}{Q_{CTi} \times C_i}$$
 , где (1)

 \mathbb{Q}_i - площадь пика характеристического иона определяемого соединения на i-ой хроматограмме.

 $\mathbb{Q}_{\mathrm{CTi}}$ - площадь пика характеристического иона "внутреннего стандарта" на і-ой хроматограмме.

 C_{CT} - концентрация "внутреннего стандарта", (C_{CT} =2 мкг/см 3).

 C_{i} - концентрация определяемого компонента в данном градуировочном растворе, мкг/см 3 .

Рассчитывают среднее значение поправочного коэффициента:

$$F = \frac{1}{k} \sum_{i=1}^{k} F_i$$
, где (2)

k - число результатов измерения для данного компонента.

$$k = N \cdot 1$$
, где

N - число градуировочных растворов (N ≥ 4).

1 - число анализов каждого раствора (1 \geq 2).

Рассчитывают значение относительного среднего квадратичного отклонения поправочного коэффициента \mathbb{S}_{F} , %:

$$S_{F} = \frac{100}{F} \sqrt{\frac{1}{k-1} \sum (F - F_{i})^{2}}, \%$$
 (3)

Если выполняются условия:

$$2S_{\mathbf{F}} \le 1/3\delta$$
, где

$$\delta = (\delta_{\rm B} - \delta_{\rm H})/2 \tag{4}$$

то градуировка выполнена с достаточной для данной методики точностью (значения $\delta_{\mathtt{B}}$ и $\delta_{\mathtt{H}}$ приведены в табл.1, 2 и 3). Если градуировка соответствует всему диапазону измерений, то значение $\mathcal{S}_{\mathtt{F}}$ сравнивают с наименьшим значением δ . Если градуировка соответствует какому-либо поддиапазону измерений, то рассчитывают значение δ для этого поддиапазона.

Если данные условия не выполняются, то либо переградуируют хроматограф, возможно с использованием другого "внутреннего стандарта", либо строят градуировочную кривую:

$$F = f(Q_i/Q_{CT})$$

При построении градуировочной кривой используют средние значения F и $(\mathbb{Q}_i/\mathbb{Q}_{CT})$ для каждой концентрации. Рассчитывают относительное среднее квадратичное отклонение для каждой концентрации (\mathbb{S}_{Fc}). При этом для каждой точки должно выполняться условие:

 δ рассчитывается по вышеприведенной формуле (4) для соответствующего поддиапазона измерений.

8.8. Отбор проб

8.8.1. Отбор проб воды производится в соответствии с ГОСТом 17.1.5.05-85 в чистые стеклянные емкости объемом не менее 1 л. Набор проб помещают в охлаждаемые контейнеры и хранят замороженными или охлажденными до 4 °С до тех пор, пока не будет сделана экстракция.

Если в пробах присутствуют остатки хлора, то добавляют 80 мг тиосульфата натрия на каждый литр воды.

- 8.8.2. Для получения одного результата измерения отбирают 2 одинаковые пробы воды.
- 8.8.3. Все пробы должны быть проэкстрагированы в течение 7 дней и полностью проанализированы в течение 40 дней после экстракции.

9. Выполнение измерений

Пробы экстрагируют, используя делительную воронку. Если при использовании делительной воронки, образуются эмульсии, не позволяющие получить приемлемые выходы, то экстракцию проводят в непрерывном экстракторе (раздел 9.3.). Указания по использованию делительной воронки,

приведенные ниже, даны для объема пробы в 1 л. Если объем экстрагируемой пробы составляет 2 л, экстракцию проводят последовательно порциями метиленхлорида по 250, 100 и 100 см³ в случае основных/нейтральных сред, и 200, 100, 100 см³ - для кислых сред.

9.1. Экстракция проб воды в делительной воронке

9.1.1. Для дальнейших измерений объема пробы, отмечают положение мениска на контейнере с пробой. Всю пробу переливают в двухлитровую делительную воронку. Значение рН раствора с помощью раствора гидроксида натрия доводят до рН>11. Индикаторной бумагой измеряют рН раствора.

В контейнер из-под пробы добавляют 60 см ³ метиленхлорида, герметично закрывают и встряхивают в течение 30 сек для промывки внутренней поверхности. Переносят растворитель в делительную воронку. Экстрагируют пробу, встряхивая делительную воронку в течение 2 мин, периодически сбрасывая избыточное давление. Выжидают не менее 10 мин для отделения органического слоя от водной фазы. Если между слоями образуется эмульсия, составляющая более одной трети объема слоя растворителя, то используют механические методы для полного разделения фаз. Выбор оптимального метода зависит от пробы, но может включать взбалтывание, фильтрацию эмульсии через стеклянную вату, центрифугирование или другие физические методы. Переносят экстракт метиленхлорида в колбу Эрленмейера объемом 250 см ³. Если эмульсию не удалось разрушить (выход метиленхлорида с учетом его растворимости в воде - меньше 80%), пробу, растворитель и эмульсию переносят в экстракционную камеру непрерывного экстрактора и выполняют операции, описанные в разделе 9.3.

Добавляют вторую порцию метиленхлорида объемом 60 см³ в контейнер для пробы и вновь проводят экстракцию. Полученный экстракт переносят к экстракту, полученному при первой экстракции, в колбу Эрленмейера. Аналогично выполняют третью экстракцию. Комбинированный экстракт является основно-нейтральной фракцией.

- 9.1.2. Используя 50%-ный раствор серной кислоты, создают среду в водной фазе с pH<2. Три раза экстрагируют порциями метиленхлорида объемом по 60 см 3 . Собранные в колбе Эрленмейера объемом 250 см 3 экстракты являются кислой фракцией.
- 9.1.3. Для каждой фракции собирают концентратор Кудерна-Даниша (K-D), присоединив трубочный концентратор объемом 10 мл к выпаривательной колбе объемом 500 см 3 . Вместо K-D можно использовать другие концентрирующие устройства, если они удовлетворяют требованиям, описанным в разделе 3.3.

Каждую фракцию пропускают через сухую колонку, содержащую около 10 см 3 безводного сульфата натрия и собирают в K-D концентраторе. Для количественного переноса колбу Эрленмейера и колонку промывают метиленхлоридом, объемом от 20 до 30 см 3 .

В выпаривательную колбу для каждой фракции помещают одну или две чистых "кипелки" и подсоединяют трехшариковую колонку Шнейдера. Предварительно в верхнюю часть колонки Шнейдера добавляют 1 см 3 метиленхлорида. Помещают K-D прибор на баню с горячей водой (60-65 °C), так чтобы трубочный концентратор был частично погружен в горячую воду и нижняя поверхность колбы омывалась горячим паром. В соответствующей части колонки дистилляционные шары будут энергично вибрировать, но камера не должна переполняться конденсирующимся растворителем. Когда объем жидкости в аппарате составит 1 см 3 , K-D прибор снимают с водяной бани и выжидают не менее 10 мин. Отсоединяют колонку Шнейдера, промывают колбу и место соединения с трубочным концентратором 1-2 см 3 метиленхлорида, для этого рекомендуется шприц вместимостью 5 см 3 .

В трубочный концентратор добавляют еще одну или две чистых "кипелки" и подсоедияют двухшариковую колонку Шнейдера. В верхнюю часть колонки добавляют около 0,5 см ³ метиленхлорида. Помещают K-D аппарат на водяную баню (60-65 °C), так чтобы трубочный концентратор был частично погружен в горячую воду. Ставят прибор в вертикальное положение, установливают требуемую температуру для полного концентрирования в течение 5-10 мин. В

определенный момент дистилляции шары колонки будут интенсивно вибрировать, но камеры не будут переполняться конденсирующимся растворителем. Когда видимый объем жидкости достигает $0.5~{\rm cm}^3$, удаляют K-D прибор с водяной бани и охлаждают в течение, как минимум, $10~{\rm mun}$. Удаляют колонку Шнейдера, промывают колбу и место соединения с трубочным концентратором $0.2~{\rm cm}^3$ ацетона или метиленхлорида. Растворителем доводят конечный объем до $1.0~{\rm cm}^3$. Если ГХ/МС анализ не будет выподняться немедленно, трубочный концентратор закрывают и ставят в охлаждаемое место. Если экстракты будут хранить более двух дней, их переносят в тефлоновые сосуды с закручивающимися крышками и помечают название фракции (основная/нейтральная или кислая).

9.1.4. Для определения первоначального объема пробы, наполняют контейнер для пробы до метки и переливают воду в градуированный цилиндр объемом 1000 см 3 . Записывают объем с погрешностью не более 0,5 см 3 .

9.2. Экстракция проб воды в непрерывном экстракторе

Помечают положение мениска на контейнере для пробы для последующего измерения объема. Измеряют основность среды индикаторной бумагой и доводят ее до значения pH>11 с помощью раствора гидроксида натрия. Переносят пробу в непрерывный экстрактор. В контейнер для пробы добавляют 60 см ³ метиленхлорида, герметично закрывают, и встряхивают 30 сек для промывки внутренней поверхности. Переносят растворитель в экстрактор.

Повторяют описанную выше процедуру, используя порции метиленхлорида по 50 и 100 см 3 .

Добавляют 200-500 см³ метиленхлорада в дистилляционную колбу и экстрагируют 24 ч. Дают остыть, затем отсоединяют кипятильную колбу и высушивают, концентрируют и хранят экстракт, как описано в разделе 9.1. Водную фазу подвергают кислой экстракции (см. раздел 9.2*.).

Чистую дистилляционную колбу с 500 см³ метиленхлорида, подсоединяют к непрерывному экстрактору. Используя 50%-ный раствор серной кислоты, осторожно доводят кислотность среды до рН<2. Экстрагируют 24 ч. Сушат, концентрируют и хранят экстракт, как описано в разделе 9.2*.

9.4. Анализ экстрактов с помощью ГХ/МС-системы

9.4.1. Перед анализом к каждому экстракту добавляют 10 мкл раствора соответствующего "внутреннего стандарта" (п.8.4.), с концентрацией 0,2 мг/см 3 микропшрицем вместимостью 10 мм 3 и тщательно перемешивают.

Затем вводят в инжектор в режиме "Без деления потока" (Splitless) 1 мм 3 кислого или основно-нейтрального экстракта и осуществляют хроматографическое разделение смеси в условиях, указанных в $\pi.8.7.1$.

Записывают хроматограммы в виде файлов данных. Для основного характеристического и 2-х подтверждающих ионов, выбранных из табл.6, получают хроматограмму по реконструированному полному ионному току.

- 9.4.2. Проводят качественную идентификацию по следующим критериям:
- характеристические ионы для каждого измеряемого компонента должны давать максимальное значение в любом выбранном скане;
- время удерживания не должно отличаться более чем на 30 с от времени удерживания подлинного соединения;
- относительная интенсивность пиков 3-х хараетеристичеких ионов в реконструированной хроматограмме не должна отличаться более чем на 20% от относительной интенсивности этих пиков в справочном масс-спектре. Справочный масс-спектр может быть получен анализом градуировочного раствора на ГХ/МС-системе или взят из справочной библиотеки;
- структурные изомеры, имеющие очень похожие масс-спектры и времена удерживания, различающиеся менее чем на 30 с, могут быть надежно идентифицированы, если они имеют

приемлемое разрешения в градуировочном растворе. Приемлемое разрешение считается достигнутым, если пики перекрываются на высоте менее 25% от суммы их высот. В противном случае, структурные изомеры идентифицируются как изомерные пары.

9.3.3. На каждой хроматограмме измеряют площадь пика основного характеристичекого иона каждого анализируемого соединения и "внутреннего стандарта". Результаты измерений заносят в таблицу по форме табл.8 и обрабатывают в соответствии с п.10.

Результаты измерения содержания компонентов в пробе

Таблица 8

N пробы (параллельного определения)	Площадь характер	истических ионов		я определяемого понента
	Определяемого Внутреннего компонента, Q_i стандарта, Q_{CT}		В пробе X_i	Среднее значение X , мкг/л
1	Q ₁	Q _{CT1}	X ₁	А
2	Q ₂	Q _{CT2}	X_2	

Если отклик для какого-нибудь экстракта превышает рабочий предел ГХ/МС-системы, экстракт разбавляют и повторяют анализ.

10. Обработка результатов измерения

10.1. Вычисляют концентрацию определяемого соединения в каждой из двух проб по формуле:

$$X = \frac{Q_i \cdot I_{CT}}{Q_{CTi} \cdot F \cdot V_o} \text{ мкг/л, где}$$
 (5)

 \mathbb{Q}_i - площадь характеристического иона для определяемого соединения на хроматограмме i-ой пробы;

 $\mathbb{Q}_{\mathrm{CTi}}$ - площадь характеристического иона внутреннего стандарта на хроматограмме і-ой пробы;

 I_{CT} - количество добавленного к экстракту внутреннего стандарта $I_{CT} = C_{CT} \cdot V_{CT} = 2$ мкг;

 V_0 - объем экстрагируемой воды (в литрах);

F - поправочный коэффициент.

10.2. Вычисляют среднее значение концентрации определяемого соединения:

$$\overline{X} = \frac{1}{2} \sum_{i=1}^{2} X_i$$
, (6)

10.3. Рассчитывают разницу между результатами двух параллельных измерений:

$$d = X_1 - X_2 \tag{7}$$

Полученное значение не должно превышать предельно допустимого значения $\mathbb D$, которое рассчитывают по формулам (8, 9):

$$D = 2,77S \tag{8}$$

$$S = S_{\text{OTH}} \cdot X, \text{ rge}$$
 (9)

значения $S_{\text{отн}}$ для соответствующих диапазонов концентраций приведены в табл.1, 2.

11. Оформление результатов измерения

Результат измерения концентрации каждого соединения представляют в форме:

$$X = A$$
, мкг/л δ от $\delta_{\rm H}$ до $\delta_{\rm B}$, % при $P = 0.95$

или

$$\mathbb{X}=\mathbb{A}$$
 , мкг/л \triangle от $\triangle_{\mathbb{B}}$ до $\triangle_{\mathbb{B}}$, мкг/л при \mathbb{P} =0,95, где

А - численное значение, полученное по формуле (6).

$$\triangle_{H,B} = \delta_{H,B} \cdot XX/10_{,MK\Gamma/\Pi}$$

Вместо $\delta_{\mathtt{H}}$ и $\delta_{\mathtt{B}}$ подставляют их численные значения из табл.1, 2 и 3 приписанные тому диапазону концентрации, к которому принадлежит значение C, рассчитанное по уравнению X=f(C), представленному в табл.1, 2 и 3 для каждого соединения.

12. Контроль погрешности методики выполнения измерений

12.1.1. Перед началом выполнения измерений по настоящей МВИ каждый аналитик должен показать способность получать результаты с приемлемой воспроизводимостью и точностью, выполнив тест, изложенный в п.12.2 "Контроль погрешности МВИ с помощью аттестованных растворов".

Кроме того, этот вид контроля проводят регулярно, через 20-25 измерений в реальных образцах, а также при появлении сомнительных результатов текущих анализов.

- 12.1.2. Перед обработкой любых результатов аналитик должен проанализировать "холостую пробу" дистиллированной воды, по п.9.1, чтобы убедиться в отсутствии помех и загрязнений от аналитической системы, стеклянного оборудования и реагентов. При выявлении загрязнений обнаруживают их источник постадийно анализируя все реактивы. Анализ "холостой пробы" проводят также при использовании новой партии реактивов.
- 12.1.3. При выполнении измерений следует ежедневно проводить контроль стабильности градуировочной характеристики фактора отклика в соответствии с п.12.3.
- 12.1.4. При выполнении каждого анализа проб воды проводят оперативный контроль погрешности МВИ по п.10.3.

12.2. Контроль погрешности методики выполнения измерений с помощью аттестованных растворов

12.2.1. Алгоритм контроля.

Для проведения контроля готовят по 4 л (1 л - четыре раза) аттестованных растворов A, B и C в соответствии с п.12.2.2-3. Значение относительной погрешности определения концентрации каждого компонента в аттестованном растворе A не превышает $\pm 3,3\%$, в растворах B и C - $\pm 3,5\%$ при доверительной вероятности 0,95.

Проводят измерение концентрации каждого компонента в растворе А в соответствии с п.9 МВИ. Результаты анализа обрабатывают в соответствии с п.12.2.5.

В растворах В и С проводят измерение концентрации тех компонентов, для которых низшая граница диапазона измеряемых содержаний (табл.1, 2 и 8) совпадает с аттестованным значением или находится вблизи него.

12.2.2. Приготовление раствора смеси компонентов в воде с концентрацией каждого 100 мкг/л (аттестованный раствор A).

Пипетками вместимостью 0.5 см^3 отбирают по 0.5 см^3 исходных растворов смесей веществ с концентрацией каждого 2 мг/см 3 и помещают в мерную колбу объемом 10 см^3 . Добавляют ацетон до метки. Получают раствор с концентрацией 100 мкг/см^3 .

Затем 1 см 3 этого раствора с помощью пипетки вместимостью 1 см 3 помещают в мерную колбу объемом 1 дм 3 , в которой находится около 500 см 3 дистиллированной воды, добавляют воду до метки.

12.2.3. Приготовление раствора смеси компонентов в воде с концентрацией каждого 10 мкг/л (аттестованный раствор В).

Мерным цилиндром вместимостью 100 см^3 отмеряют 100 см^3 аттестованного раствора A и помещают его в мерную колбу объемом 1 л. Доводят объем раствора дистиллированной водой до метки.

12.2.4. Приготовление раствора смеси компонентов в воде с концентрацией каждого 5 мкг/л (аттестованный раствор C).

Мерным цилиндром вместимостью 50 см 3 отбирают 50 см 3 аттестованного раствора A и помещают его в мерную колбу объемом 1 л. Доводят объем раствора дистиллированной водой до метки.

- 12.2.5. Обработка результатов контроля погрешности МВИ.
- 12.2.5.1. Рассчитывают среднее значение результатов измерений компонента Z в аттестованном растворе:

$$C_z = \frac{1}{4} \sum_{i=1}^4 C_{zi}$$
, где

 C_{zi} - результат измерения концентрации компонента Z в і-ой пробе аттестованного раствора.

Полученное значение должно удовлетворять условию:

$$C_{\mathtt{H}} \leq C_{\mathtt{Z}} \leq C_{\mathtt{B}}$$
, где

значения $C_{\mathtt{H}}$ и $C_{\mathtt{B}}$ для каждого компонента и каждого аттестованного раствора приведены в табл.9.

Нормативы контроля погрешности

Таблица 9

Название вещества	Концентрация аттестованного раствора, мкг/л	Предельно допустмое значение СКО, $S_{ m lim}$, %	Область допустимых значений результатов измерений, ${\rm C}_{\rm H}{\rm -C}_{\rm B},{\rm мкг/л}$			
1	2	3	4			
Вещества, извлекаемые при основно-нейтральной реакции						
Арохлор-1260 100 51 29,9-69,9						
2,2'-Дихлордиэтиловый эфир	10	26	5,6-8,5			
	100	42	55,6-113			

			Стран
1,3-Дихлорбензол	5	55	2,0-5,2
	100	33	63-107,6
1,4-Дихлорбензол	5	43	1,5-2,9
	100	30	54-88,6
1,2-Дихлорбензол	5	39	2,9-5,5
	100	26	63,8-96,8
2,2'-Дихлордиизопропиловый эфир	5	42	1,9-3,8
	100	30	76-125
N-нитрозоди-н-пропиламин	10	51	3-7
	100	35	76,6-135
Гексахлорэтан	5	51	1,7-4,0
	100	22,5	59,2-85,2
Нитробензол	10	38	5,4-10,3
	100	24	85-127
Изофорон	5	47	4,3-9,6
	100	35	82-143,5
Ди-(2-хлорэтокси)метан	10	47	3,8-8,5
1,2,4-Трихлорбензол	5	46	2,4-5,4
	100	20	78,4-108
Нафталин	5	17	4,6-6,1
	100	26	61,9-93
Гексахлорбутадиен	10	43	4-8,2
	100	25	55,8-84,2
Гептахлор	10	17,5	4,9-6,5
	100	29	64,4-103,6
2-Хлорнафталин	5	47	4,3-9,6
	100	35	82-143,5

			Стран
$oldsymbol{eta}$ -Гексахлорциклогексан	5	15	2,6-4,2
	100	24	69,6-102,4
Аценафтилен	5	5	5,0-5,4
	100	29	68,5-110,6
2,6-Динитротолуол	10	40	4,7-9,3
	100	19	87,6-117,4
Аценафтен	5	16	4,3-5,5
	100	19	81-110,6
2,4-Динитротолуол	10	45	2,8-7,6
	100	16	75,3-98,7
Флуорен	5	22	3,7-5,3
	100	15	79-102,9
4-Хлорфенил фениловый эфир	5	2	4,9-5,1
	100	24	51-107,6
4-Бромфенил фениловый эфир	5	42	2,2-4,3
	100	16	78-100,7
Гексахлорбензол	5	20	3,7-5,0
	100	22,5	61,3-88
Алдрин	5	5,5	5,3-5,8
	100	32	59,5-99,9
Фенантрен	5	32	3,2-5,4
	100	16	75-98
Антрацен	5	18	4,1-5,3
	100	26	63,6-97,4
Гептахлорэпоксид	5	20	2,3-3,2
	100	41	60,8-119,4
Ди-н-бутилфталат	5	56	2,0-5,3
	100	18	50,8-68,6

			Стра
4,4'-ДДЕ	10	10	6,0-7,0
	100	30	52,6-86,4
Диэльдрин	5	15	3,5-4,4
	100	25	65,4-98,2
Флуорантен	5	9	4,7-5,4
	100	26	65-99,8
4,4'-ДДД	5	20	2,0-2,8
	100	35	39,8-70,8
Пирен	5	22	3,3-4,7
	100	20	70-96,6
Эндрин альдегид	100	29	55,5-88,7
4,4-ДДТ	10	57,5	2,5-6,7
	100	52,5	43,9-107,5
Бутилбензилфталат	10	46	3,1-6,7
	100	24	51,8-76,8
Бенз[а]антрацен	5	49	2,3-5,3
	100	21	72-103
3,3'-Дихлорбензидин	100	48	72-147,8
Хризен	100	45	59-126
Ди-(2-этилгексил)-фталат	5	56	2,0-5,3
	100	18	50,8-68,6
Ди-н-октилфталат	10	48	4,2-9,4
	100	28	58,2-92,2
Бенз[b]флуорантен	5	46	1,7-4,0
	100	29	70,5-111,5
Бенз[k]флуорантен	10	48	6,8-9,5
	100	25	68,3-102,5
Бенз[а]пирен	10	34	6,5-11,3

			Стран	
	100	29	69,2-110,8	
Индено[1,2,3-cd]пирен	100	39	51,6-97,9	
Дибенз[a,h]антрацен	100	45	59-126	
Бенз[g,h,i]периллен	100	36	99-123	
Ве	щества, извлекаемь	ые при кислой экстракц	ии	
Фенол	5	59	1,8-5,0	
2-Хлорфенол	10	45	5,2-11	
	100	25	62,7-93,3	
2-Нитрофенол	10	45	6,1-13,0	
	100	22	8,7-124	
2,4-Диметилфенол	5	39	5,4-10,4	
	100	22	62,3-88,7	
2,4-Дихлорфенол	5	54	2,6-6,4	
	100	20,5	86,9-102,0	
4-Хлор-3-метилфенол	5	49	2,8-6,3	
	100	30	64,1-105	
2,4,6-Трихлорфенол	10	51	5,2-12,4	
	100	25	70,3-110,6	
2,4-Динитрофенол	100	52,6	36,7-89,3	
4-Нитрофенол	100	53,3	34,3-84,7	
4,6-Динитро-2-метилфенол	120	61	50,0-143,9	
Пентахлорфенол	10	62	5,7-16,8	
	100	32,5	72,7-117	

12.2.5.2. Рассчитывают среднее квадратическое отклонение (СКО) результата измерения.

$$S = \frac{1}{3} \sqrt{\sum_{i=1}^{4} (C_{zi} - C_{z})^{2}}$$

и относительное СКО.

$$S_{\text{oth}} = \frac{S}{C_z} \cdot 100 \text{ }\%$$

12.2.5.3. Сравнивают полученное значение СКО с предельно допустимым значение СКО из

табл.8. Если выполняется условие $\mathbb{S} \leq \mathbb{S}_{\lim}$, то воспроизводимость измерения является удовлетворительной.

Если для какого-либо компонента данное условие не выполняется, то выясняют причину и повторяют измерения.

12.3. Контроль стабильности градуированной характеристики (поправочного коэффициента)

Для определения стабильности градуировочной характеристики прибора для какого-либо соединения анализируют один из градуировочных растворов, использованных для определения F, и рассчитывают поправочный коэффициент $F_{\mathfrak{x}}$ по уравнению 1 п.8.7 или находят его значение по графику. Если выполняется соотношение

$$|F_{\tau} - F| \le 2S_F \times \frac{F}{100}$$

то можно проводить измерения по методике.

Если соотношение не выполняется, то тест повторяют со свежим градуировочным раствором. При получении отрицательного результата в этом случае переградуируют ГХ/МС-систему.

Официальное издание М.: Информационно-издательский центр Минздрава России, 1997